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Asymmetric Synthesis of 4-Amino-4H-Chromenes by Organocatalytic Oxa-
Michael/Aza-Baylis–Hillman Tandem Reactions

Jos� Alem�n,* Alberto NfflÇez, Leyre Marzo, Vanesa Marcos,
Cuauht�moc Alvarado, and Jos� Luis Garc�a Ruano[a]

4-Aminochromanes (Scheme 1) are a class of structures
that are integrated in hundreds of natural and bioactive
compounds. Their importance is reflected in the existence of
dozens of patents related to 4-aminochromanes bearing dif-
ferent aromatic rings at the NH2 group.[1] Among these com-

pounds, those with a CH2OH group at C-3 (3-hydroxymeth-
yl-4-aminochromanes)[2] exhibit interesting biological prop-
erties (e.g., antiobiotic),[2d] and take part in the tetrahydro-
chromanoquinolines core,[3] whereas 1,4a-5,10b-tetrahydro-
4H-chromen[4,3b]pyridines are considered as aza analogs of
D1-transtetrahydrocannabinols.[3h�i] Moreover, some attrac-
tive alkaloids (e.g., martinelli[4]) with the 4-aminochromane
structure have been described. Finally, the 4-aminochroma-
nol moiety is also important and dozens of medicinal studies

as well as the synthesis of related products have been re-
ported.[5]

The most direct organocatalytic asymmetric method for
obtaining these skeletons would involve the oxa-Michael re-
action of a,b-unsaturated aldehydes to salicylaldehyde[6] or

salicylimines,[7] followed by al-
dolic (or Mannich, Z=NR3) re-
action of the resulting inter-
mediate A (Scheme 1). Howev-
er, when R2 is hydrogen, the in-
termediate B cannot be isolat-
ed, because H2Z (Z=O, NR) is
quickly eliminated, affording
2H-chromenes C,[7a–d] due to
the large acidity of such hydro-
gen. When R2 is not hydrogen,
no reaction takes place, because
the reactivity of A is strongly
decreased.[8] At this point we
reasoned that reactions of N-ac-

tivated 2-hydroxy benzaldimines with alkynals would afford
4-amino-4H-chromenes E (Scheme 2c), which could retain
the stereochemical information associated to the nitrogen
function and could be used as precursors of B by reduc-
tion.[9] To the best of our knowledge, this transformation in-
volving an oxa-Michael/aza-Baylis–Hillman (aza-BH)[10]

tandem process[11] with alkynals has never been reported
and prompted us to study it.

The classic aza-BH reaction[10a] consists of the reaction of
a nucleophile (usually a catalyst) with a deactivated double
bond and further addition of the resulting a-stabilized carb-
anion to a C=N bond, being finally the catalyst recovered
after elimination (Scheme 2a). The use of deactivated triple
bonds as electrophiles in aza-BH determines that the final
elimination cannot take place (Scheme 2b). These reactions
have hardly been explored,[12] which increased our interest
for studying them. Since natural 4-aminochromanes are op-
tically pure, we decided to study the oxa-Michael/aza-BH
tandem reaction by using activation with silyl prolinol ethers
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Scheme 1. Approach to the synthesis of 4-aminochromenes.

Chem. Eur. J. 2010, 16, 9453 – 9456 � 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 9453

COMMUNICATION



in an asymmetric version,[13] taking advantage of the effi-
cient activation of alkynals[14] in their reactions with nitroal-
kenes has been recently reported.[14b]

In this work we present the first highly enantioselective
organocatalytic[15] oxa-Michael/aza-BH tandem reaction be-
tween 2-alkynals and salicyl N-tosylimine, leading to optical-
ly active 4-amino-4H-chromenes by iminium activation
(Scheme 2c).

The screening of salicyl N-tosylimine 2 with alkynal 1 a
was used as the model reaction. Different secondary amines
were used as catalyst and all reactions were stopped after
2 h (see Table 1). With proline 5 a and prolinol 5 c, none or
very low conversion was observed (entries 1 and 3). In the
rest of the cases, the reaction provided mixtures of two com-
pounds, the expected 4-amino-4H-chromene 4 a and the 4’a.
With prolinamide 5 b full conversion was achieved in less
than 2 h, but a 1:1 mixture of both compounds (4 a and 4’a)
was obtained with rather low stereoselectivity (33 % ee for
4 a, entry 2).[16] Better enantiomeric excesses were obtained
with protected silyl prolinol ethers 5 d (95 % conversion)
and 5 e (77 % conversion), but a significant amount of 4’a
was also formed (entries 4 and 5). The amount of the by-
product 4’a could not be reduced by dilution in toluene or
CH2Cl2 (entries 6 and 7), but it was increased when the ratio
1 a/2 become smaller (entry 8). To our delight, the use of a
1.5:1 ratio of 1 a/2 (entry 9), afforded a 80:20 mixture of 4 a
and 4’a and the result was even better by using an 2:1 ratio
of 1 a/2 (entry 10). Under these last conditions, we observed
full conversion after two hours into a 95:5 mixture of 4 a
and 4’a, isolating 4 a with 80 % yield. Both compounds 4 a
and 4’a were obtained with identical ee (entry 10). All men-
tioned reactions were performed by using 20 mol % of the
catalysts. We studied the influence of the catalytic loading.
Thus, good results were also obtained with 10 mol %
(99 % ee and 58 % yield, entry 11) with only traces of 4’a
and also with 5 mol % of the catalyst (97 % ee, 60 % yield,
entry 12); however, under these conditions the reaction time
was slightly longer (8 h). The use of only 1 mol % of 5 d was

not enough to activate the alky-
nal and no reaction was ob-
served (entry 13).

In order to check the scope
of the reaction, we explored re-
actions of different aryl (1 a–g),
alkyl (1 h) and alkenyl (1 i) alky-
nals with 2 under the previously
optimized conditions (en-
tries 10–12, Table 1). Results
are summarized in Table 2.
Most reactions were completed
in less than 2 h (8 h when the
catalytic loading was 5 mol %,
entries 1 and 2). All reactions
were performed on a 0.2 mmol
scale in 0.2 mL of toluene,

except for entry 3 that was carried out in 2.0 mmol scale.
Upon scaling up the reaction, 4 a was obtained in 76 % iso-
lated yield without decreasing the optical purity (98 % ee).
The incorporation of electron-donating groups (p-Me, o-
MeO and p-MeO) at the alkynal�s aromatic ring did not
affect the stereoselectivity with ee�s ranging between 94 to

Scheme 2. Different approaches for the aza-BH reaction.

Table 1. Optimization of the reaction of aldehyde (1a) with salicyl N-to-
sylimine 2.[a]

CatalystACHTUNGTRENNUNG(mol %)
Solvent 1a/2 Conver-

sion [%][c]
4 a/4’a ee

[%][d]

1 5a (20) toluene 1:1 nr – –
2 5b (20) toluene 1:1 >98 50:50 33
3 5c (20) toluene 1:1 nr – –
4 5d (20) toluene 1:1 95 55:45 96
5 5e (20) toluene 1:1 77 41:59 98
6 5d (20) toluene[d] 1:1 85 40:60 nd
7 5d (20) CH2Cl2

[d] 1:1 60 70:30 96
8 5d (20) toluene 1:1.5 >98 50:50 94
9 5d (20) toluene 1.5:1 >98 80:20 96

10 5d (20) toluene 2:1 >98 (80)[e] 95:5 98 (98)[f]

11 5d (10) toluene 2:1 >98 (58)[e] >98:2 99
12 5d (5) toluene[g] 2:1 >98 (60)[e] 93:7 97
13 5d (1) toluene[g] 2:1 nr – –

[a] All reactions were performed on a 0.2 mmol scale in 0.2 mL of solvent
and stopped after 2 h. [b] Conversion was determined by 1H NMR spec-
troscopy. [c] Enantiomeric ratio was determined by chiral HPLC; nr=no
reaction. [d] Diluted up to 0.1m. [e] Isolated yield after flash chromatog-
raphy. [f] Enantiomeric ratio of the byproduct 4’a. [g] These reactions
were stopped after 8 h.
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98 % (Table 2, entries 4–7). No erosion of yield or stereose-
lectivity was observed by decreasing the catalytic loading to
5 mol % (entry 6). Interestingly, compound 1 e, bearing an
electron-poor aromatic ring, also evolved with good enantio-
selectivity. However, the reactivity was substantially de-
creased and was necessary 40 mol % of the catalyst and 20 h
for the consumption of the starting material (entry 8). Other
alkyl groups at para-position, such as n-Pent and tBu also
produced excellent ee�s with both 20 mol% and 5 mol % of
catalyst (entries 9–12). Finally, reactions of alkynals bearing
alkyl or alkenyl chains, instead of aryl ones, produced good
stereoselectivity and isolated yields (entries 13–15). Interest-
ingly the reaction with the alkynal 1 j did not work at stan-
dard conditions (entry 16). The structure of 4 a and absolute
configuration of compound 4’a were unequivocally estab-
lished by X-ray analysis (see the Supporting Information for
more details).[17]

A plausible catalytic cycle for explaining the course of
these reactions is depicted at Scheme 3. First, the catalyst 5
activates the alkynal 1, forming an iminium intermediate I,
that undergoes the oxa-Michael addition with the salicyl N-
tosylimine 2. Resulting alenamine intermediate II[18] reacts
with the imine in an intramolecular fashion leading com-
pounds 4. The catalyst 5 is recovered in this last step.

In conclusion, herein we present the first highly enantio-
selective oxa-Michael/aza-Baylis–Hillman tandem reaction
between 2-alkynals and tosylimines leading to optically
active 4-amino-4H-chromenes. This reaction takes place in

less than 2 h with high yields and excellent enantioselectivi-
ties. The catalytic loading could be reduced to 5 mol % with
slight increase in reaction times.
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